f′(x)=h→0limhf(x+h)−f(x)
| Función | Derivada |
|---|
| f(x)+g(x) | f′(x)+g′(x) |
| f(x)−g(x) | f′(x)−g′(x) |
| f(x)⋅g(x) | f′(x)⋅g(x)+f(x)⋅g′(x) |
| g(x)f(x) | g(x)2f′(x)⋅g(x)−f(x)⋅g′(x) |
| f(g(x)) | f′(g(x))⋅g′(x) |
| k:k∈R | 0 |
| k⋅f(x):k∈R | k⋅f′(x) |
| xr:r∈Q | nxn−1 |
| f−1(b) | f′(a)1 |
| sinx | cosx |
| cosx | −sinx |
| tanx | cos2(x)1 |
| secx | cos2xsinx |
| cosecx | sin2x−cosx |
| cotgx | sin2x−1 |
| arcsinx | 1−x21 |
| arccosx | 1−x2−1 |
| arctanx | 1+x21 |
| ax:a∈(0,1)∪(1,+∞) | ax⋅lna |
| lnx | x1 |
| coshx | sinhx |
| sinhx | coshx |